If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.9x^2=29
We move all terms to the left:
0.9x^2-(29)=0
a = 0.9; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·0.9·(-29)
Δ = 104.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{104.4}}{2*0.9}=\frac{0-\sqrt{104.4}}{1.8} =-\frac{\sqrt{}}{1.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{104.4}}{2*0.9}=\frac{0+\sqrt{104.4}}{1.8} =\frac{\sqrt{}}{1.8} $
| 3x+3+5x+1=5x+4 | | 3x-8=2x+x | | 2x+21=77 | | 7h–4=10 | | 2x-13=3(x-1)=13 | | -70-7m=3m | | 3=6=5x+2 | | 2x-3/3=1 | | 16/7x=-8/12 | | 4x+5x-9=4 | | 2x-32=76 | | .11x=25000 | | 6m+2=38,7 | | J3x+5x+4-x+7=88 | | 3=12+w | | 2/3k+9=5 | | 6(x+1)=12x | | 25t^2=50t+25 | | 17r+7=7 | | 8(v-82)=64 | | 25^2=50t+25 | | 5x+8+3x+4=-40 | | (5x+23)=(4x-5)=180 | | w+15/4=7 | | 1/2(1-c)=11/6c | | 5x+6x=350 | | -q=-690 | | f/3+12=16 | | -670=-10q | | -30t=-840 | | 8m+60=964 | | 8=f+17/3 |